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Abstract

Different computational methodologies have been developed to quantify the uncertain response of a relatively simple aero-
elastic system in limit-cycle oscillation, subject to parametric variability. The aeroelastic system is that of a rigid airfoil, sup-
ported by pitch and plunge structural coupling, with nonlinearities in the component in pitch. The nonlinearities are adjusted
to permit the formation of a either a subcritical or supercritical branch of limit-cycle oscillations. Uncertainties are specified in
the cubic coefficient of the torsional spring and in the initial pitch angle of the airfoil. Stochastic projections of the time-
domain and cyclic equations governing system response are carried out, leading to both intrusive and non-intrusive compu-
tational formulations. Non-intrusive formulations are examined using stochastic projections derived from Wiener expan-
sions involving Haar wavelet and B-spline bases, while Wiener–Hermite expansions of the cyclic equations are employed
intrusively and non-intrusively. Application of the B-spline stochastic projection is extended to the treatment of aerodynamic
nonlinearities, as modeled through the discrete Euler equations. The methodologies are compared in terms of computational
cost, convergence properties, ease of implementation, and potential for application to complex aeroelastic systems.
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1. Introduction

The desire to simulate limit-cycle oscillation (LCO) in aeroelastic systems has become increasingly practical
over the last decade. While many significant challenges yet remain in modeling the phenomenon in a reliable
and verifiable manner, there is little doubt that some of the key computational elements have taken shape.
Recent work by Thomas et al. [36] and Farhat et al. [11] demonstrate that complex aeroelastic responses
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can be captured with Euler and Navier–Stokes analysis for geometry of practical significance. Additional work
by Beran et al. [4] and Denegri and Dubben [8] exemplify the degree to which simulation with transonic small-
disturbance theory can yield additional insights into the phenomenology of LCO.

Thomas et al. have commented on the sensitivity of computed LCOs to the modeled values of vehicle prop-
erties in their models [37]. They observed that small changes (<5%) in the natural frequencies of structural
modes participating in the LCO of an F-16 caused large changes in LCO amplitude (>30%) and decrease
of the speed of LCO onset (�5%). This latter change, while seemingly small, represents a substantial and sur-
prising reduction in the modeled operational capability of the vehicle. Their findings may indeed be a reflec-
tion of sensitivity of the actual phenomenon to real-world variations in the aeroelastic system. Currently, there
exists a substantial flight-test program for the F-16 that helps to certify the vehicle for flight safety with any
possible store configuration (i.e., externally mounted tank or munition) [5]. In many ways, the existence of this
test program is a testimony to the sensitive degree to which the F-16’s aeroelastic behavior depends on store
properties such as weight, location, geometric shape (with or without fins), and airframe linkage. Within the
test and evaluation community, there is much anecdotal knowledge concerning the variability in LCO
response characteristics observed for fighter aircraft. An experimental study reported by Cunningham [6]
examined how nominally identical aircraft could experience different aeroelastic responses based on variations
in horizontal-tail structure within manufacturing tolerances.

Owing to the practical importance of avoiding or limiting LCO in operational vehicles, it is sensible to
study the generic problem of computing the dependence of nonlinear oscillations on variations in system
parameters. This effort serves to highlight some of the key computational issues through examination of ide-
alized problems exhibiting LCO, and provides a roadmap for developing a more advanced capability suitable
for real-world configurations.

While the literature is relatively rich in the stochastic analysis of problems that are either static, linear, or
both, there is little work directed towards describing nonlinear processes that are dynamic with compact sto-
chastic representations. Certainly, LCOs represent only one sub-class of dynamic processes; but they represent
an important category of autonomous solutions that bifurcate from systems otherwise in equilibrium, and are
the subject of study in many fields outside of the aerospace sciences. Furthermore, LCOs are challenging to
simulate, in that the physical times needed to realize fully developed responses can be quite large. As it will
be seen, this challenge is magnified when systems are analyzed stochastically.

Restricting the present review of stochastic analysis to those related to LCOs, comments on noteworthy
features of several articles can be made. In a foundational effort, Xiu et al. [40] analyzed the stochastic
response of a structurally supported cylinder in crossflow, subject to variability in structural stiffness. Assum-
ing a Gaussian probability density function (PDF) for the random parameter, they computed PDFs of cylin-
der position at different time levels using Wiener expansions of the dependent variables in the specified random
variable. These expansions will be described later, but yield a spectral (i.e., efficient) means for associating sys-
tem response with values of input parameters, e.g., those selected in a sampling process. Stochastic solutions
were tracked into the development of LCO, an aeroelastic phenomenon sustained in this problem by vortex
shedding. Millman et al. [25] studied the LCO of a structurally supported airfoil in the time domain using
modeled aerodynamics and a new Wiener expansion of the stochastic response with improved convergence
properties. Focusing on the bifurcation characteristics of the system, nonlinearity of the torsional support
was adjusted to yield a subcritical Hopf bifurcation, which enabled bi-modal responses to be analyzed.

In a set of papers in 2004, the authors and their colleagues studied the large-time failure of Wiener expan-
sions in the time domain, and examined uniformly convergent means for characterizing uncertainty in LCO
responses. First, Pettit and Beran [30] critically examined why stochastic analysis in the time-domain fails,
using the previous airfoil problem. They found that the nonlinearity of the stochastic projection increases
in time, such that any fixed projection becomes unsatisfactory in capturing the nonlinearity at a sufficiently
large time. Beran and Pettit [2] proposed a non-time-domain approach to capturing LCO that is rapidly con-
vergent, describing the stochastic behavior of the airfoil response in a very small number of orbital modes. In
their work, one structural parameter, the cubic stiffness coefficient, was considered random. Millman et al. [26]
alternatively proposed a stochastic projection method derived from B-splines and apply the technique to rep-
resenting the probabilistic response of the airfoil in terms of a single output variable, the peak pitch angle.
Two input variables were considered random, the cubic stiffness coefficient and the initial angle of attack. They
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successfully reproduced the bi-modal characteristics of the response PDF, realizing that the aeroelastic state at
large time would either be equilibrium (small initial angles) or LCO (large initial angles) for a range of reduced
velocities. In turn, they used the compact B-spline representation with Monte-Carlo simulation (MCS) to pre-
dict quickly failure probability of the aeroelastic system (i.e., for peak pitch angle exceeding a threshold value)
as a function of reduced velocity.

These studies, which sought to assess and employ spectral representations of the stochastic domain, were
accompanied by other studies that probed the available range of aeroelastic behaviors through MCS. Pettit
and Beran [29] investigated aeroelastic behaviors arising from variability in three input variables, the initial
pitch angle and two stiffness coefficients. Lindsley et al. [19] examined the dynamic response of nonlinear pan-
els in the presence of a distributed uncertainty in the material (the stiffness) and a parametric uncertainty in the
support conditions, and later extended their work to include thermal effects [20]. Lindsley and Beran have also
employed reduced order modeling with the proper orthogonal decomposition to accelerate the prediction of
PDFs of panel response using MCS [21].

Recent studies expand the range of applications and techniques related to the stochastic analysis of
LCOs. Attar and Dowell [1] employ MCS and a response surface method to map the output character-
istics of a delta wing (as measured by the root-mean square of the wing tip displacement) to two input
parameters considered variable: thickness and modulus of elasticity. As treated by Millman et al. [26],
Attar and Dowell gave special attention in the response surface mapping to the modeling of the bifurca-
tion leading to LCO. Pettit and Beran [32] continued study of the airfoil, and related oscillatory phenom-
ena, using two-dimensional Wiener–Haar expansions. They found that the multiresolution properties of
the Haar wavelet greatly increased the ability to capture properly stochastic aeroelastic properties with
advancing time. Xiu et al. [41] provided an excellent assessment of the available expansion techniques
for the stochastic domain, which they place in a category called stochastic Galerkin (SG) methods. Fur-
thermore, they present a new, equation-free approach to capturing uncertainties in LCOs, based on a
fixed-point formulation of the unsteady equations in LCO, like that previously examined by Beran and
Pettit [2]. An important advantage of their equation-free formulation, as realized for a chemical reactor
problem, is in preserving the strong convergence properties of SG methods while avoiding the need to
make modifications to the deterministic algorithm to support the stochastic analysis (more will also be
said on this subject later).

Finally, Pettit and Beran [33] examined new challenges to methodology development and uncertainty
assessment arising from the need to treat distributed variability. While the bulk of the prior work on dynam-
ical systems addressed parametric uncertainty (and for a very limited number of parameters), practical systems
will be characterized by random fields and/or large, discrete sets of random parameters. The issues deemed by
Pettit and Beran to be of critical interest were how to measure the influence of grid quality on statistical prop-
erties of the response, such as skewness, and how to apply SG methods to models described by a very large
number of input parameters.

This paper is an exposition of the authors’ joint study of uncertainties in LCO, which unites the presenta-
tion of the examined computational methodologies in a manner enabling the reader to discern the relative
strengths and weaknesses of the different techniques. The unpublished content of this paper primarily draws
from work related to the extension of so-called cyclic analysis to stochastic systems in LCO, a subject concen-
trated on in this work. First, a common set of principles and nomenclature are introduced and applied to the
formulation of the stochastic methods, starting with a description of the airfoil problem, which serves as an
application backbone for the paper. Results for this problem are then presented, with attention primarily
given to the dependence of LCOs erupting from subcritical Hopf bifurcations on input parameters considered
to be random. Lastly, properties of the schemes are contrasted, and commentary on future needs for method-
ology development is given.

2. Formulation

This article attempts to unite the discussion of different approaches for characterizing uncertainties in
LCOs; a typical aeroelastic problem serves as a common reference point for the different threads of the
dialogue. Each of the techniques requires description, to some appropriate level, of a mathematical frame-



220 P.S. Beran et al. / Journal of Computational Physics 217 (2006) 217–247
work. To help guide the reader in studying the aeroelastic problem and the stochastic techniques of interest,
the following outline is provided. It should be noted that Sections 2.4 and 2.5 pertain to dynamic responses
that characterize the entire LCO, while Section 2.6 restricts attention to LCO amplitude.

Sec. 2.1 The Aeroelastic model problem
Sec. 2.2 Deterministic analysis of the model problem
Sec. 2.3 Mathematical representations of the stochastic dimension
Sec. 2.4 Stochastic LCO responses: a non-time-domain approach
Sec. 2.5 Stochastic LCO responses: a time-domain approach
Sec. 2.6 Stochastic LCO amplitudes: a projection approach

2.1. Airfoil problem

The aeroelastic system studied here is a nonlinear incarnation of the standard symmetric airfoil in low-
speed flow, described by two physical degrees of freedom (DOFs): pitch, a(t), and plunge, h(t) (see Fig. 1).
The current formulation is an extension of that investigated previously by Lee et al. [16] in which the
plunge DOF has linear stiffness but the pitch DOF includes a 3rd-order stiffness term in addition to
the linear component. For their model, the restoring force associated with the torsional spring is expressed
as Ka(a + k3a

3), where Ka is the dimensional linear stiffness and k3 is the dimensionless parameter govern-
ing the cubic nonlinearity. In the stochastic analysis reported later in this paper, k3 is related to a random
variable.

When the system is fully linear (k3 = 0), the onset of unbounded growth aeroelastic oscillations, otherwise
known as ‘‘flutter’’, occurs at a Hopf bifurcation located at k*, where k is defined to be a nondimensional
parameter proportional to flight speed (‘‘reduced velocity’’). In physical systems, aeroelastic responses are lin-
early stable below the critical speed but linearly unstable above the critical speed. In the model, positive values
of k3 yield a supercritical Hopf bifurcation, for which stable LCOs are sustained for k > k*, while negative val-
ues of k3 represent a situation of spring softening for which the bifurcation is subcritical and unstable LCO
states exist for k < k*.

In the current study, a 5th-order element to the pitch restoring force is added, Kak5a
5, following previous

work [29]. With this form of the torsional stiffness, selection of k3 < 0 and k5 > 0 yields a subcritical bifurcation
that possesses a cyclic fold at kLCO such that stable LCO states are available for k > kLCO, where kLCO < k*.
The final form of the 8-DOF system is given elsewhere [28]. A FORTRAN-90 subroutine by which f(x) is eval-
uated is available from the first author upon request.

The airfoil dynamics are represented by a small system of eight ODEs, obtained in compact form through
linear modeling of the aerodynamics [16]. The nonlinear, autonomous equations are written in a generic form
as
dx

dt
¼ fðx; k; cÞ; ð1Þ
where c is a system parameter that will be varied, and x is the array of dependent variables, such that x 2 RN ,
where here N = 8. f is an array of nonlinear equations such that f : RN � R2 ! RN . The notation of placing
α

-h

Kh

Kα

xα

Fig. 1. Schematic of pitch-and-plunge airfoil.
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arrays in boldface is adopted herein. It should also be noted that c can be generalized to include additional
parameters of relevance.

The solution of (1) is subject to the initial conditions
xðt ¼ 0Þ � x0; ð2Þ

where the initial conditions can be parameterized as well.

A more sophisticated model of the aeroelastic airfoil, which employs computational fluid dynamics (CFD)
to predict airloads, has been applied in stochastic analysis by Millman [28]. The CFD methodology is based on
the discrete Euler equations, and the airfoil is structurally supported using the Pettit and Beran cubic/pentic
formulation [29] described above. While the dimensionality of the CFD-based analysis is much greater, the
generic representation of the aeroelastic system, (1), remains unchanged. For reference, the grid used in the
Euler analysis, which corresponds to a NACA 64A006 airfoil, is shown in Fig. 2. When results are shown later
for this model, it will be referred to as the airfoil/CFD problem.

2.2. Deterministic analysis of the governing equations

The system of equations (1) is straightforward to time integrate with either explicit or implicit techniques.
The integration proceeds from the initial state to a time t at which the solution is deemed to be in steady-state
or LCO. Details of various techniques are given in [3,28].

A representative time history is shown in Fig. 3, as obtained by time integrating the low-order airfoil model
for a spring-hardening case (k = 6.35; other model specifics are given in Section 3). Response in pitch angle is
shown. For this supercritical case, the evolution towards LCO is relatively slow, and can be made slower by
decreasing k towards k*. Analysis of (1) proceeds in a time-accurate fashion over these many cycles, starting
from the initial time t = 0.

Now, the equations are re-cast and expanded into a form that we refer to as ‘‘cyclic’’, A basic cyclic method,
well suited for the low-order nature of the problem, is described that is later extended into a stochastic form.
Details of the methodology development and application were described elsewhere for deterministic systems,
with emphasis on reduced order modeling as a potential strategy for enabling analysis of large sets of equa-
tions [2]. Further comments on the background of the method are made later in the section, along with a dis-
cussion of the context of the methodology with respect to other useful methods.

In cyclic form, time-periodic solutions of (1) are sought that satisfy
xðtÞ ¼ xðt þ T Þ; ð3Þ
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Fig. 2. Grid used by Millman [27] for Euler analysis of airloads on airfoil.
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where T is the period of the assumed LCO. The time variable is scaled, s ” t/T, leading to an equation in which
the period appears explicitly:
dx

ds
¼ T fðx; k; cÞ: ð4Þ
A set of points on the periodic orbit at Nt uniformly distributed time levels is selected, leading to an expanded
array of NtN unknowns,
X � ðX1;X2; . . . ;XN tÞ
T ¼ ðxðs1Þ; xðs2Þ; . . . ; xðsNtÞÞ

T
;

where here the subscript specifies the time level (i.e., sj+1 = sj + Ds; Ds ” 1/Nt). Using the trapezoidal rule, (1) is
discretized with 2nd-order accuracy at each of the temporal points on the orbit to yield an expanded collection
of equations (j = 1, . . . ,Nt):
Gj �
1

2
ðFjþ1 þ FjÞ �

1

Ds
ðXjþ1 � XjÞ ¼ 0; ð5Þ
where Fj ” Tf (x(sj)). A closed set of equations,
G � ðG1;G2; . . . ;GNt ;GNtþ1;GNtþ2ÞT ¼ 0; ð6Þ

is obtained by adding a pair of scalar constraints to (6) to prevent the solution from being trivial (i.e., Xj = 0
for all j) and to prevent the phase of the solution to be arbitrary:
GNtþ1 � ðXjÞi1 � b1 ¼ 0; ð7Þ
GNtþ2 � ðXjÞi2 � b2 ¼ 0; ð8Þ
where j is an arbitrary point on the cycle, usually taken to be 1, and i1 and i2 are indices corresponding to two
different variables at that time instant. Constraint (7) is used to identify the ‘‘starting’’ point of the cycle, such
that b1 = 0 (assuming an oscillation approximately centered about 0 for the selected variable). Likewise, (8) is
used to set the amplitude of the cycle, such that b2 6¼ 0. For this study, i1 = 1 and i2 = 2. These constraints are
graphically depicted in Fig. 4, which shows a 16-point cycle in a two-parameter phase space that is assumed to
progress in a counter-clockwise fashion in time.

The addition of two equations is accompanied by an increase in the number of unknowns by two. These
unknowns are XNtþ1 ¼ k and XNtþ2 ¼ T . Thus, a total of NtN + 2 equations are solved for not only the
LCO solution, but also the period of the oscillation and the value of the free parameter k at which the
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LCO meets the amplitude constraint (8). This inverse approach of specifying the amplitude and computing the
physical parameter we refer to as the cyclic specified amplitude (CSA) method.

In symbolic form, the complete system of cyclic equations is expressed as
Fig. 5.
dynam
GðX; k; c; b1; b2Þ ¼ 0; ð9Þ

and is solved for an expanded form of X,
X � ðX1;X2; . . . ;XNt ; k; T Þ
T
; ð10Þ
using Newton’s method and Gaussian elimination. The Jacobian, J, of the system is formulated numerically
using a one-sided difference approximation. To close (9), periodicity must be enforced, which is accomplished
in (5) by replacing references to Xj+1 at point Nt by X1. With this modification, and the additional constraint
equations, J becomes a bordered, banded matrix.

It should be pointed out that while time accuracy is maintained in this iterative process through the time
discretization implicit to G = 0, time accuracy is not maintained from one orbit to the next. For LCOs that
develop slowly, placement of the equations in steady-state form can greatly accelerate convergence to the cor-
rect LCO solution. This observation that time accuracy is not needed to compute X has some other interesting
implications. From a computational perspective, X is not necessarily dependent on x0 (the initial conditions);
any initial guess of the asymptotic solution behavior may serve as an initial condition, provided that the iter-
ative process is convergent.

Assuming convergence, the numerical procedure will behave differently for supercritical and subcritical
bifurcations. As depicted in Fig. 5, different branches of deterministic LCO solutions are possible (taking k
as a free variable), and form the backbone of clusters of neighboring LCO solutions arising from reasonable
variations of parameters in the nonlinear model. For supercritical bifurcations, the procedure will converge to
a single LCO for a specified amplitude on the supercritical branch. This is consistent with the physical
LCO Amplitude

Stable LCOs on 
supercritical branch

Stable LCOs on 
subcritical branch

Unstable LCOs on 
subcritical branch

Linearly stable equilibria Unstable equilibria

Cartoon of possible branches of LCO solutions from a simple Hopf bifurcation point, subject to variability in the nonlinear
ics (deterministic solutions shown as curves, stochastic solutions shown as cross-hatched clusters).
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response, in that all initial conditions are attracted by the same stable LCO. However, for subcritical LCOs,
there exists a range of values of k for which G = 0 is satisfied by two distinct LCOs of different amplitudes, one
physically stable and one physically unstable, as well as equilibrium solutions that are linearly stable. Thus, for
a subcritical bifurcation, LCO amplitudes can be specified that lead to solutions X that are not physically real-
izable. Furthermore, in this same range of k, equilibrium solutions are stable, again depending on initial con-
ditions. It follows that for this kind of bifurcation, cyclic methods do not connect solutions and initial
conditions in a physically consistent manner.

The CSA method provides a means for computing starting points on branches of LCO solutions by enforc-
ing an amplitude condition not achievable by the trivial solution f = x = 0. In general, it is difficult to ‘‘move
off’’ the branch of trivial static solutions near a bifurcation point through Newton iterates of (9) without forc-
ing the LCO amplitude to be non-trivial. However, once a converged, non-trivial LCO solution is computed
with the CSA method, the solution can be used as an initial guess for a similar calculation in which k is spec-
ified. This direct approach of specifying the physical parameter and computing the LCO amplitude we refer to
as the cyclic specified parameter (CSP) method, and is simply implemented by removing (8) from the set of
equations (9) or by replacing (8) with the equation k� �k ¼ 0 where �k is the target value of k. Thus, with
the CSP method, the equations are essentially expressed as
GðX; �k; c; b1Þ ¼ 0: ð11Þ

A representative cyclic solution is shown in Fig. 6, as obtained by solving the CSA equations for a spring-soft-
ening case (k � 7; other model specifics are given in Section 3). Linked responses in pitch angle and plunge are
shown. The gap in the curve represents the index cut between the first and last points collocated into X.

We conclude this section with a brief discussion of the methods developed to solve (1), subject to (3). The
current formulation, a 2nd-order-accurate finite-difference method [3], is not new, but directly inspired by the
previous work of Doedel [9] (creator of AUTO) and others, e.g. [15]. As will be shown, the application of this
approach in the stochastic domain resolves certain mathematical problems in a manner that is considered by
the authors to be new. As a finite-difference technique, the CSA method can be regarded as an H-convergent
process, where H is used here to denote time-point spacing (h is widely regarded in the literature to represent
grid-point spacing, but is reserved herein for plunge). P-convergent methods based on Fourier expansions,
otherwise known as ‘‘harmonic balance’’ (HB) have been developed for, and applied to, aeroelastic and
turbo-machinery problems. The interested reader is urged to consult the following Refs. [14,10,23,35]. For
self-excited oscillations, a critical aspect of the computation is in the accurate prediction of the time period.
So far, that component of the LCO computation has not been robustly and seamlessly handled in the various
available schemes. The current method provides strong convergence to the LCO solution, including the per-
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iod, but only for the simple problems to which it has been applied. Application to more complex problems will
likely require significant algorithmic modifications.

2.3. Preliminaries concerning chaos expansions of stochastic processes

To this point, a problem has been defined involving a deterministic, physical process connecting a set of
known input conditions to a calculable system response. The problem of interest, however, involves values
of input conditions that are not known, but which have some probability of falling within certain intervals.
To aide in re-casting the problem in stochastic form, e.g., enabling Wiener (spectral) expansions in terms
of stochastic variables, some well-known mathematics are reviewed. This review follows that put forward
by Pettit and Beran [30]. Ghanem and Spanos [13] provide a complete exposition of the theory by which
the polynomial chaos expansion, one of the most well known Wiener expansions, is developed.

2.3.1. Probability background

We assume h is an outcome in a probability space, n(h) is a random variable (rv) that maps outcomes from
the probability space to R, and y 2 R is a possible value of n. This rv follows a specified distribution function,
MnðyÞ ¼ Pr½h : nðhÞ 6 y�; ð12Þ

where Pr quantifies the portion of the probability space for which the values of the rv do not exceed y. We
assume that Mn(y) is continuous and strictly increasing. Under these conditions, dMn(y) = mn(y) dy defines
the probability density induced by n(h).

Before proceeding, some comments need to be made concerning notational conventions. It is common in
the literature regarding stochastic processes to denote a random process by a capital letter, e.g., W, and a real-
ization of the process by the same letter in lower case, e.g., w. We sacrifice this convention in the current paper,
since capital letters have been used to denote cyclic variables. In this sense, an individual realization of the
cyclic process will be denoted by Xi(y).

The expected value operator of the process xi for any time t is written as
ExðtÞ ¼ hxiðt; nÞi ¼
Z

xiðt; nðhÞÞPr ðdhÞ ¼
Z 1

�1
xiðt; yÞmnðyÞ dy: ð13Þ
2.3.2. Global bases for the stochastic dimension

A general Wiener expansion provides a spectral means for decomposing a 2nd-order random process when
the covariance operator is unknown, as is the case for the response of a nonlinear system. Assuming one rv,
the Wiener expansion of xi(t), the ith component of the aeroelastic response, is expressed as
xiðt; nðhÞÞ ¼
X
j2J

½x̂i�jðtÞWjðnðhÞÞ; ð14Þ
where {Wj(n(h))} is a set of basis functions that are orthogonal (more will be said about orthogonality later)
with respect to the distribution of n, and M is an index set whose structure depends on the type of basis. For
example, this paper will consider 1-D spectral expansions involving Hermite polynomials and B-splines, and
2-D expansions involving Haar wavelets. In turn, an input variable that is assumed random is also represented
by Wiener expansions:
cðnðhÞÞ ¼
X
j2J

ĉjWjðnðhÞÞ: ð15Þ
For notational convenience, the expansions above are shown in terms of one rv (n), which can be thought of as
an additional problem dimension. In general, however, for a given problem, any number of rv’s can be pres-
ent, greatly increasing the number of potential expansion coefficients.

A spectral expansion based on the Hermite polynomials, Hej(n), is referred to as the Wiener–Hermite
(WHe) expansion, the Hermite chaos, or polynomial chaos expansion (PCE), which was popularized by
Ghanem and Spanos [13]. This expansion is particularly useful for representing Gaussian processes, since
the basis functions are statistically orthogonal with respect to the Gaussian measure, i.e.,
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hHeiHeji �
1

2p

Z 1

�1
HeiðnÞHejðnÞe�n2=2 dn ¼ 0 ði 6¼ jÞ; ð16Þ
where 1
2pe
�n2=2 is the probability density function associated with an rv that is Gaussian. The polynomials are

constructed from the recurrence relation
He0ðnÞ ¼ 1; He1ðnÞ ¼ n; HejðnÞ ¼ nHej�1 � ðj� 1ÞHej�2; ð17Þ

and satisfy ÆHeiHeiæ = i!.

If the rv is uniformly distributed on a finite interval, a similar expansion can be employed with the Legendre
polynomials as the basis: the Wiener–Legendre (WLe) expansion. The WLe development is omitted, because it
directly parallels that which is presented here for WHe. Spectral expansions for other probability distributions
and their associated bases have recently appeared [39,17]. It is noted that use of an expansion that is not well
suited to the character of the underlying rv will typically result in poor performance of the selected expansion.

When employed in stochastic analysis, the WHe is truncated to include P + 1 terms:
cðnðhÞÞ ¼
XP

j

ĉjHejðnðhÞÞ: ð18Þ
The expansion in (18) is guaranteed to converge as P!1 for any square-integrable process, where square-
integrable is with respect to the Gaussian probability measure.

In this paper, rv’s will be considered to be either standard normal, i.e., Gaussian with vanishing mean and
of unity standard deviation, or uniform over the unit interval. The latter is specified in the case of wavelet
expansions. In the case of standard normal rv’s, related input parameters are taken to be Gaussian, such that
c ¼ c0 þ c1n; ð19Þ

which is a two-term WHe expansion.

2.3.3. Projection techniques for the stochastic dimension

Given one of the expansions provided above, a stochastic representation of the desired response is obtained
when the coefficients in the expansion are known. Methods for computing these coefficients fall into two cat-
egories: non-intrusive and intrusive. The former class of methods involves sampling solution behavior for dif-
ferent values of n and then numerically inverting (14) to obtain the coefficients. This approach does not require
modification of the deterministic algorithm that generates responses, but does require an appropriate interro-
gation of the sampling space.

For example, consider a WHe expansion of the response, xi(t,n):
xiðt; nðhÞÞ ¼
X
j2J

½x̂i�jðtÞHejðnðhÞÞ: ð20Þ
Then, following a SG projection of both sides of (20), and exploiting the orthogonality properties of the Her-
mite polynomial, the WHe coefficients are expressed in terms of an expected value computation (removing the
explicit appearance of h):
½x̂i�jðtÞ ¼
1

j!
hxiðt; nÞHejðnÞi: ð21Þ
½x̂i�0ðtÞ represents the time-dependent, expected value of the process, and
PP

j¼1ð½x̂i�jðtÞÞ
2 approaches the time-

dependent variance as P!1.
Standard Monte-Carlo simulation (MCS) can be employed to estimate the expected value in (21). This sim-

ple procedure involves generating NMCS realizations of n, computing the associated set of realizations of x(t,n)
from the physical model, and estimating (21) at each time step for each expansion coefficient and each com-
ponent of x. More efficient approaches that could be considered for practical implementation include the
many variance reduction or efficient sampling techniques [24], which should improve the convergence of
the MCS, and Gauss–Hermite quadrature of the integral in (14). Given the computational expense associated
with realistic aeroelastic simulations, some combination of efficient sampling and reduced-order physics mod-
els will likely be required for more complex problems. Pettit [31] discusses this in slightly greater depth.
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Intrusive methods involve the projection of the governing equations onto the Wiener basis followed by
numerical calculation of solutions to the projected equations. Such methods, essentially Galerkin formulations
over the stochastic domain, do involve modification of the deterministic algorithm, but produce stochastic solu-
tions in ‘‘one-shot’’ without the need for sampling. Ghanem and Spanos [13] provide the details of an intrusive
formulation for a linear, finite element formulation and Millman, et al. [28] take this path for the airfoil problem
outlined at the start of this section. In many ways, however, intrusive methods resemble non-intrusive methods
in that expected values need to be computed. The question of which formulation is more computationally effi-
cient is primarily determined by the speed with which expected values of terms appearing in the governing equa-
tions can be computed. For the intrusive approach to be superior, the expected value computation must be
accelerated by taking advantage of the known form of the governing equations.
2.3.4. Failure of global bases for time-domain stochastic LCO analysis
Drawing from the material developed above, it would seem to be a simple task to analyze LCO time series

derived for different values of a relevant random parameter (n), and then construct the WHe coefficients in
time, following (21). Pettit and Beran carried out this task for the airfoil problem [30] and found the surprising
result that the WHe expansion failed at sufficiently large times, as exhibited by a growing reduction in the
energy contained within the reconstructed solution with increasing time. This behavior is shown in Fig. 7
for a case of supercritical LCO by comparing the deterministic solution (baseline) to solutions reconstructed
from WHe projections using 3rd-order, 10th-order, and 20th-order expansions. Solutions are shown at large
time (i.e., numerous periods of oscillation). Clearly, the expansions fail in reproducing the baseline result (for
n = 0). Pettit and Beran [30] and Millman et al. [26] describe the computational problems associated with the
WHe expansions in greater detail, but point to the failure of fixed-order WHe expansions at large-time to cap-
ture an increasing level of nonlinearity in the dependence of xi(t,n) on n.

Similar findings are reported by Wan and Karniadakis [38], who developed an adaptive, multi-element basis
to combat errors in the stochastic analysis that appear at large time, like that described above. Their procedure
also provides a means for capturing discontinuities in system response within a framework of stochastic anal-
ysis. This capacity has relevance to our later discussion of discontinuities in LCO response, which arise when
the biurcation behavior is subcritical.
2.3.5. Local bases for the stochastic dimension

The Haar wavelet is now introduced, whose basis constitutes the most elementary multi-resolution analysis
(MRA) of L2ðRÞ [12], the set of square-integrable real-valued functions on R. This basis is used to resolve the
highly nonlinear behavior of the LCO response in the stochastic domain to address the failure observed in the
last section. The presentation follows that of [34], where additional details can be found.

The Haar scaling function is defined by
/ðvÞ ¼ I½0;1ÞðvÞ ¼
1; 0 6 v < 1;

0; otherwise;

�
ð22Þ
where I[a,b)(v) is the indicator function for v 2 [a,b). Scaled and translated versions of /(v) are written as
/ðjÞk ¼ 2j=2/ð2jv� kÞ; ð23Þ

where j 2 fZ P 0g, Z is the set of integers, k 2 [0,2j � 1], and the scale factor, 2j/2 is chosen so that k/ðjÞk k ¼ 1.

Let z(v) be a square-integrable, real-valued function on the unit interval. Each scale or dilation factor j

defines a function space, V j ¼ spanf/ðjÞk g such that Vj�1 � Vj. The set f/ðjÞk g forms a partition of [0,1). Let
P(j)z be the projection of z onto Vj; then
P ðjÞz ¼
X2j�1

k¼0

cðjÞk /ðjÞk ðvÞ; ð24Þ
and the projection coefficients are given by the inner product
cðjÞk ¼
Z 1

0

zðvÞ/ðjÞk ðvÞ dv: ð25Þ
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Fig. 7. Baseline airfoil LCO and simulated limit cycles computed from WHe expansions (n � 0).
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Increasing j therefore produces a higher resolution projection, so that the sequence of spaces fV jg1j¼0 comprise

a MRA of L2([0,1)). Scaling the unit interval extends this to a MRA of L2ðRÞ. The projection P(j�1)z leaves
behind a detail function w(j�1) 2 Vj, which is the difference between two resolution levels:
wðj�1Þ ¼ P ðjÞz� P ðj�1Þz: ð26Þ

This difference can be represented in terms of the Haar wavelets, which are based on the piecewise-constant
mother wavelet:
wðvÞ ¼
1; 0 6 v < 1=2;

�1; 1=2 6 v < 1;

0; otherwise:

8><
>: ð27Þ
An orthonormal basis for L2ðRÞ is composed of all possible integer-valued translations and dilations of w(v),
wðjÞk ðvÞ ¼ 2j=2wð2jv� kÞ; j; k 2 Z; ð28Þ
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which satisfy kwðjÞk ðvÞk ¼ 1; therefore, any square-integrable function can be expanded in a doubly indexed
Haar wavelet series,
zðtÞ ¼
X

j;k

dðjÞk wðjÞk ðvÞ; ð29Þ
and the generalized Fourier coefficients can be evaluated as
dðjÞk ¼
Z 1

�1
zðvÞwðjÞk ðvÞ dv: ð30Þ
The detail function can be synthesized from the wavelets at scale j � 1,
wðj�1Þ ¼
X2j�1

k¼0

dðj�1Þ
k wðj�1Þ

k ðvÞ; ð31Þ
and the projection P(j)z can be expanded as
P ðjÞz ¼ P ðj�1Þzþ
X2ðj�1Þ�1

k¼0

dðj�1Þ
k wðj�1Þ

k ðvÞ

¼ P ð0Þzþ
Xj�1

m¼0

X2m�1

k¼0

dðmÞk wm
k ðvÞ ð32Þ

¼ c0/ðvÞ þ
Xj�1

m¼0

X2m�1

k¼0

dðmÞk wm
k ðvÞ: ð33Þ
In practice, the upper resolution limit, J = max(j), must be determined by the resolution needed to retain the
scales that contain significant energy.

2.4. Wiener–Hermite cyclic analysis

The CSP method can be used to establish the dependence of limit cycle behavior on system parameters, and
evaluate the probabilistic system response subject to variability in these key parameters. For the time being,
Gaussian variability in a single parameter, c, is considered, such that
c ¼ ĉ0 þ ĉ1n; ð34Þ

where n is an rv, and ĉ0 and ĉ1 are constants. Later, the problem of two random input variables is discussed.

In this manner, (11) is now expressed as
GðX; �k; cðnÞ; b1Þ ¼ 0; ð35Þ

which governs the random process defining the system response, Xð�k; nÞ. Eq. (35) is written in a form that rec-
ognizes the underlying dependence of G on n through c. As discussed above, the stochasticity of the system can
be inferred with MCS, using actual realizations of the LCO solution for specified values of �k. However, a more
efficient, and perhaps variance reducing, approximate approach is to represent the random process by a trun-
cated series expansion in the stochastic dimension:
Xð�k; nÞ ¼
XP

i¼0

bXið�kÞHeiðnÞ: ð36Þ
For the projected stochastic CSP (PSCSP) method, the coefficients of the PCE, bXið�kÞ, can be evaluated from a
set of actual LCO realizations by applying the expected value operation, Æ Æ æ, and orthogonality to (36):
bXið�kÞ ¼
1

i!
hXHeii: ð37Þ
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Once bXi are computed, then ‘‘simulated’’ realizations of Xð�kÞ can be obtained by evaluating (36) for random
values of n. Branches of coefficient solutions can be found through repeated application of the process for dif-
ferent values of �k.

The PSCSP method is applied to the solution data generated by the CSP method and thus is non-intrusive.
Also of interest are the relative merits of the PSCSP approach with respect to an alternative, intrusive
approach (ISCSP), where variability is accounted for by making fundamental changes to the CSP method.
The goal of the ISCSP process is the direct computation of PCE coefficients for each of the Nt points in a sto-
chastic LCO. First, an extended solution array, bXð�kÞ, is defined that contains all the cyclic PCE coefficients:
bX � ðbX0; bX1; . . . ; bXP ÞT; ð38Þ

where bXi are the ith-order PCE coefficients corresponding to X. In implementing the ISCSP method, three
indices are defined to reference the N · Nt · P + 1 variables comprising bX : i, the index corresponding to
the PCE order; j, the index corresponding to point on the LCO, and k, the index corresponding to the kth
element of x at the jth LCO point.

An expanded set of equations are solved to compute all the unknowns associated with bX. These equations
are formulated by taking expected values of GHei (where G is evaluated using the PCE-approximated form of
X) for each of the Nm components of the PCE, and enforcing (11):
hGHeii ¼ 0; i ¼ 0; . . . ; P : ð39Þ

Eq. (39) is assembled into a single set, expressed as
bGðbX; �k; c;b1Þ ¼ 0; ð40Þ
in a manner consistent with the construction of bX. The resulting system is solved to convergence with New-
ton’s method, as previously described for the CSA method.
2.4.1. Cyclic analysis: initial conditions

The computation of cyclic solutions of the airfoil problem requires the iterative process to be initialized
with a starting solution. In general, the process does not converge when initial conditions are arbitrarily spec-
ified; the starting solution needs to reflect some degree of correct physical behavior. Time integrations of air-
foil response in pitch and plunge revealed a clockwise rotation of the phase portrait in these two parameters
(pitch plotted on the abscissa). An initial approximation to the LCO dynamics is imposed by assuming a cir-
cular trajectory in pitch and plunge (all other variables assumed to vanish), using the target cross-over value of
plunge (b2) to set the LCO amplitude. This starting solution is quite robust, and requires little knowledge of
LCO period or the value of parameter k.

Once one LCO solution is found with the CSA method for a specified amplitude, b2, then neighboring
LCO solutions can be easily computed using the first solution (or closest solution) as an initial
condition. Stochastic solutions are initialized as described above for X0; higher order terms are specified
to vanish.

2.4.2. Cyclic analysis: expected value computation

The expected value of f ðnÞ; hf i � 1
2p

R1
�1 f ðnÞe�n2=2 dn, can be evaluated with Gauss–Hermite quadrature,

although for cyclic solutions, it is evaluated with a simpler, midpoint-rule integration. This approach is rea-
sonable, given the following. First, computed LCO data are found to vary slowly with n over the range of
interest, and second, only a small number of terms in the expansion (36) are required, thus diminishing the
role of He(n) in increasing the order of variation. Usually, only the 1st-order term, bX1ðk0ÞHe1ðnÞ ¼bX1ðk0Þn, is needed to capture adequately the probabilistic response.

The integration is carried out over a restricted range, [nmin,nmax], instead of ±1, since extreme values of
c = k3 are very unlikely and either eliminate possible physical solutions (in the case of subcritical reduced
velocities) or lead to spurious behavior of the CSA/CSP algorithms. The integration range is evenly subdi-
vided into Ni intervals of width Dn, and the integral takes the form

PNi
i¼1fie

�n2
i =2Dn, where each term is eval-

uated at interval midpoints.
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2.5. Wiener–Haar time-domain analysis

To facilitate the use of the Haar wavelet, a transformation of the wavelet to a finite interval n 2 [a,b] is con-
sidered. Following [17], f, a uniform rv on [0,1], is defined whose realization is r. In a consistent manner, the real-
ization of the random variable n(h) associated with f is taken to be y. It is assumed that y and r are one-to-one.
Then, the transformed wavelets fWðjÞk g satisfy the orthonormality condition (with respect to the distribution of n)
Z 1

0

wðjÞk ðrÞwðlÞn ðrÞ dr ¼
Z b

a
WðjÞk ðyÞWðlÞn ðyÞ dMnðyÞ ¼ dj;ldk;n: ð41Þ
Applying (41) to (29), the WHa expansion takes the following form for a time-dependent, random process,
xi(t,n) (N such processes are considered to participate in (1):
xiðt; nðhÞÞ ¼ ½xi�0ðtÞ þ
X1
j¼0

X2j�1

k¼0

dðjÞk WðjÞk ðnðhÞÞ; ð42Þ

¼ ½xi�0ðtÞ þ
X1
j¼0

X2j�1

k¼0

dðjÞk wðjÞk ðPrðnÞÞ; ð43Þ
where [xi]0(t) = Æxi(t,n)æ (the expected value is defined in (14).
In practice, the series (43) is truncated to some resolution level j = J, and xi is regarded to be the ith com-

ponent of an array of values, each discrete in time, whose index here is designated by a superscript n. Then,
(43) becomes
xn
i ðnÞ � ½xn

i �0 þ
XJ

j¼0

X2j�1

k¼0

dðjÞk wðjÞk ðPrðnÞÞ: ð44Þ
The wavelet coefficients are (the dependence on i and n are removed here to preserve notational simplicity)
dðjÞk ¼
Z 1

0

xn
i ðM�1

n ðrÞÞw
ðjÞ
k ðrÞ dr; ð45Þ
and take the convenient form dðjÞk ¼ hxn
i w
ðjÞ
k i if n is uniformly distributed (i.e., n = f).

Mallat’s algorithm for the discrete wavelet transform (DWT) is employed to compute the 2J+1 WHa expan-
sion coefficients [22]. This approach is very computationally efficient, converging much faster than MCS.
Details are given in [32].
2.6. B-spline-based stochastic projections

In the preceding formulation of the cyclic methodology, the assumed spectral representation of the response
behavior is infinitely differentiable. Yet, in modeling subcritical bifurcation behavior, the desired responses do
not carry this smoothness: at critical values of the initial angle of attack, for example, there is a jump in the
response, where the large-time aeroelastic solution transitions from equilibrium to LCO. This behavior is
shown in Fig. 8 for the case described in more detail in Section 3.

The stochastic projections can be treated, however, as piecewise continuous over the interval of interest.
Following Millman et al. [26], splines can be used to approximate these kinds of projections. An important
property of the multivariate B-splines they choose is that the splines are a compact support basis; i.e., the influ-
ence of any particular B-spline coefficient extends over a few intervals [7]. The practical significance of this
property is that oscillations in the vicinity of discontinuous behavior can be avoided with the proper choice
in the order of the B-spline. The order used in this work is kn1

¼ kn2
¼ 2, which is equivalent to a piecewise

linear interpolation [7]. Their multivariate B-spline is
aðn1; n2Þ ¼
XNn1

i¼1

XNn2

j¼1

âijBj;kn2
;zn2
ðn2ÞBi;kn1

;zn1
ðn1Þ; ð46Þ
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initial angle of attack (n1) following [26].
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where zn1
is the vector of N n1

knots on the n1 axis (associated with initial pitch angle) and zn2
is the vector of

N n2
knots on the n2 axis (associated with cubic stiffness).

The details of the stochastic projection based on B-splines are now given, using the presentation of Millman
[27]. In general terms, an sub-domain is first chosen in the stochastic (n1,n2)-domain over which samples of the
LCO amplitude will be obtained. Next, the location of nodes to be sampled in that interval is determined. The
multivariate B-spline that approximates the response surface in the stochastic domain is then determined.
Finally, an MCS is performed on this response surface to estimate the PDF of the response. Each of the steps
of this algorithm is now described in detail.

The sub-domain selected is based on the distribution of random variables. For the airfoil problem the rvs
are assumed to be standard normal. Strictly speaking, the domain defined for a Gaussian rv is the whole real
line. There is, however, a practical limit to this interval: the parameters associated with rvs must be kept within
specified bounds in order for the equations of motion to be sensible and numerically well behaved. In the
B-spline results reported below, for which the standard deviations of the physical parameters are assumed
to be fairly large, the corresponding rvs are confined to values within [�4,4]. This sub-domain captures
99.99% of the possible responses [26].

Nodes within the two-dimensional sub-domain are prescribed using a Gaussian distribution to obtain inter-
vals distributed at equivalent increments of probability [26]. Symmetry is also imposed on the distribution
between the two rvs. To achieve closure, nodes are placed at the end points of the subdomain and at
n = ± 2.5 for both rvs to provide a certain level of smoothness in matching the interior Gaussian distribution
to the end-point values. Assuming that I represents the number of nodes distributed in each of the two coor-
dinate directions, Table 1 gives the positions of the nodes within the sub-domain. Samples of the response are
obtained at the selected values of n1 and n2.

From these samples, the multivariate B-spline problem can be solved for the coefficient matrix, âij in (46),
the details of which are given in [7]. After these coefficients are determined, an MCS is performed in (46),
which is extremely efficient, since the response properties of the aeroelastic model are already encoded in
the spline coefficients.

Before preceeding to the next section, it is noted that B-spline algorithm fits well into the stochastic projec-
tion framework developed elsewhere. Consider the array of nodes z such that zi 2 [�a,a] and z1 = �a < z2 <
� � � < zI = a for some integer I and some cutoff value a (4 above). Since it was noted that the above algorithm is
a piecewise linear interpolation, the appropriate basis for expansion would be the hat function, which has the
property [7]
WjðziÞ ¼ dij; ð47Þ



Table 1
Gaussian distributed nodes (symmetric in n)

I = 6 I = 10 I = 18

– – ±0.15731
– ±0.31864 ±0.31684
– – ±0.48878
±0.67449 ±0.67449 ±0.67449
– – ±0.88715
– ±1.15035 ±1.15035
– – ±1.53412
±2.5 ±2.5 ±2.5
±4.0 ±4.0 ±4.0
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where dij is the Dirac delta function. Thus
WjðziÞ ¼
1; i ¼ j;

0; i 6¼ j:

�
ð48Þ
Also notice that dj(z) = d(z � zj), which indicates sampling at a node. Then inner products, with unit weight
functions, are given as
hWi; dji ¼
Z a

�a
WiðzÞdðz� zjÞ dz ¼ WiðzjÞ ¼ dij; ð49Þ

hzWi; dji ¼
Z a

�a
zWiðzÞdðz� zjÞ dz ¼ zjWiðzjÞ ¼ zjdij: ð50Þ
Restricting attention, for convenience, to one rv, the piecewise linear approximation to the response a(t,n)
becomes
aðt; nÞ ¼
XI

i¼1

âiðtÞWiðnÞ: ð51Þ
Thus, the samples of the random variable are used to obtain samples of the response and a piecewise linear
approximation to the response is obtained from the B-splines. While the WHe expansion provides a best fit
to the stochastic projection and converges, in the mean square sense to an MCS [13], the piecewise linear inter-
polation is exact at the nodes and converges exactly to the MCS when the number of nodes equals the number
of samples obtained by the MCS.

3. Results

Results of the stochastic airfoil analysis are now reported for the Cyclic, Haar wavelet, and B-spline tech-
niques. Two basic airfoil configurations are considered: a softening torsional structure, defined deterministi-
cally by k3 = �3 and k5 = 20, that leads to a subcritical Hopf bifurcation, and a hardening structure, defined
by k3 = 3 and k5 = 20, that leads to a supercritical Hopf bifurcation [29]. In both cases, the bifurcation takes
place at k* � 6.285. In this paper, attention is primarily given to the problem of subcritical bifurcations, owing
to the greater challenge posed by the existence of multiple LCO states over a range of k values.

Owing to the nature of this survey, results are collected with different methods, each referred to differently.
To avoid confusion, the relevant acronyms are reviewed before proceeding.

CSA Cyclic analysis for a specified amplitude value
CSP Cyclic analysis for a specified parameter value
ISCSP Intrusive stochastic analysis with CSP
PSCSP Non-intrusive stochastic analysis with CSP
WHa Wiener–Haar expansion of data
WHe Wiener–Hermite expansion of data
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In the stochastic analysis, variability in k3 and initial pitch angle, a0 ” a(0) is considered, assuming the fol-
lowing Gaussian characteristics:
k3ðnÞ ¼ ½k3�0 þ ½k3�1n; ð52Þ
a0ðnÞ ¼ ½a0�0 þ ½a0�1n; ð53Þ
where [k3]0 is set to match the deterministic value (±3). Results of cyclic analysis are limited to variability in
spring stiffness, while the non-intrusive B-spline technique accounts for variability in k3 and a (the ability of
non-intrusive techniques to treat multiple random variables should be considered an advantage of the ap-
proach). Following results reported in [2,26], cyclic solutions are obtained for [k3]1 = 0.2 and B-spline sto-
chastic projections are computed with [k3]1 = 0.3. While the difference in the value of [k3]1 assumed in the
two studies influences the range over which data is sampled, once the coefficients bX i (cyclic) and âi (B-
spline) are computed, simulated realizations are obtained with either method using essentially the same ap-
proach. For the B-spline method, which is sensitive to a0, the following are assumed: [a0]0 = 0� and
[a0]1 = 0.2 rad. Lastly, plunge values are reported in nondimensional form, using airfoil chord as a scale
factor.

Following the notation of Lee et al. [16] the following values of aeroelastic parameters are specified:
ls = 100, ah = �0.5, xa = 0.25, xr = 0.2, ca = 20, and ra = �0.5. All methods used a time discretization that
rendered the results insensitive to further time-step refinement. Generally, as LCO amplitude (b2) decreases,
less resolution in the time step is required to capture the LCO accurately.

Results are presented in the following order. First, the character of LCOs at different points along the solu-
tion surface emanating from the bifurcation point is examined, and then the dependence on the initial angle of
attack considered. Next, stochastic LCO modes are obtained at selected points, and their relative size used to
assess the convergence properties of the Hermite expansion, as well as potential numerical differences brought
about by employing either an intrusive or non-intrusive formulation. Finally, probability of failure is esti-
mated for the aeroelastic system over a range of flight speeds.
3.1. Assessment of available LCOs

For a subcritical bifurcation (k3 = �3), LCOs are computed with the CSP method at two reduced velocities:
k = 6.5 and k = 6.2. In the latter case, two LCO solutions are available between k* (�6.285) and kLCO

(�5.908); a single LCO is computed for k = 6.5. Starting from these three points, new LCO states are com-
puted at different reduced velocities, in increments of Dk = ±0.01. Through this continuation process, a solu-
tion diagram, like that given above, is now revealed. See Fig. 9(a). Using the pitch and plunge variables, a
phase-plane representation of each LCO is shown in Fig. 9(b). In this figure it is seen that the LCOs on
the upper branch (i.e., amplitudes larger than at kLCO) are quite similar, while the LCO on the lower branch
(i.e., amplitudes smaller than at kLCO) is of smaller magnitude and characterized by smoother behavior at val-
ues of peak pitch angle. It should also be noted that the CSA method enables a single process of continuation
to compute both stable and unstable LCOs. In contrast, continuation with the CSP method fails when k is
reduced below kLCO; i.e., the method cannot ‘‘turn’’ the limit point. Thus, the CSP method requires two start-
ing solutions, one for each branch.

3.2. Stochastic analysis with the cyclic methods

Results are now presented for stochastic analysis of LCOs using the cyclic methods. The analysis is local-
ized around points of interest, including points corresponding to speeds above and below k*. Intrusive and
non-intrusive methods are compared in terms of the numerical results.
3.2.1. The PSCSP method

As described above, application of the CSP method to an ensemble of cases at regularly spaced values of n
(i.e., cubic stiffness) yields data used to compute the PCE coefficients of X. This technique is referred to as
PSCSP and is applied here to examine the expansions at the same two reduced velocities considered above:
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k = 6.5 (supercritical) and k = 6.2 (subcritical). The character of all solutions is assessed in terms of the cyclic
behaviors of the expansion coefficients, bX i, in terms of pitch and plunge.

In the expected value computation of XHei (cf. (39)), an integration range of nmin = �5 to nmax = 5 includes
all but a few, least likely, spring-stiffness values (in the tails of the Gaussian distribution), and guarantees con-
vergence of the CSP method for the interesting values of k selected above. As might be expected, the availabil-
ity of subcritical LCO solutions is somewhat sensitive to c = k3. Branches of LCO solutions for the extreme
values of c = k3 (the endpoints of the integration range for the expected value) are shown in Fig. 10(a), where
substantial movement in the location of the cyclic fold is evident. The fold is located at about k = 5.6 for the
spring with the most nonlinear softening (k3 = �4), and at about k = 6.12 for the spring with the least non-
linear softening (k3 = �2). Thus, when k = 6.1, a 5r-variation of k3 cannot be fully explored, since for the larg-
est values of k3, solutions would not be available.

It is reasonable to question the applicability of Gaussian distributions for parameters of interest in LCO,
since without compact support, there is an expectation that rare realizations of parameter values are not phys-
ically realizable. This problem is numerically confined in the cyclic procedures by selecting the ranges over
which n should reasonably vary. However, this approach is ad hoc and should be replaced by a more robust
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procedure that will give the analyst greater control over the stochastic analysis. Such a procedure is embodied
in the WHa expansions, to be discussed later. For this local basis, compact support is provided, and the capac-
ity to jump from a state of LCO to no LCO at a critical value of the parameter exists [17]. The use of Hermite
expansions in the cyclic methodology here serves to demonstrate the ability of the non-time-domain approach
to capture the stochasticity of LCOs (in a manner that is highly convergent, as to be described shortly). While
not currently available, the cyclic framework can be extended to incorporate decomposition of the stochastic
dimension with, for example, the Haar wavelet.

While the availability of solutions can restrict the appropriate range of spring-stiffness variations using Her-
mite polynomial expansions, the variation of LCO characteristics within this range is quite smooth. For exam-
ple, the dependence of LCO amplitude on k3 (in terms of maximum plunge) over the range of values
considered above is shown in Fig. 10(b). There it is seen that a very low-order polynomial would be adequate
in describing the variation. In general, this observation is applicable to all the components of X, which sug-
gests that only a small number of terms in the expansion are required.

The efficiency of the expansion is verified through inspection of the computed expansion coefficients. First,
the pitch and plunge components of bXi are viewed for k = 6.5. Two different values of Ni (the number of inter-
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vals in the expected value integration) are considered, Ni = 10 and Ni = 100, to show convergence in the prob-
ability dimension. Four coefficients are considered, bX0 through bX3, and these are shown in Fig. 11. The
0th-order term is found to be in very close agreement with the deterministic LCO solution computed at
k3 = �3 (the mean value in the PSCSP analysis), with some level of physical nonlinearity at the largest values
of pitch and plunge evident in the cycle. PSCSP predictions for both values of Ni are nearly in exact agree-
ment. At 1st-order, a somewhat greater degree of nonlinearity in the cycle is seen, and again, there is almost
no sensitivity to Ni. At 2nd-order, the pitch/plunge cycle is deformed into a ‘‘figure-eight,’’ and very slight dif-
ferences become apparent between the predictions between the two values of Ni. This is to be expected, since as
the order of the term increases, so does the variability of Hei(n), which starts to degrade the accuracy of the
expected value computations. However, it should be noted that at 2nd-order, the magnitude of the coefficients
are nearly four orders of magnitude smaller than that of the 0th-order term, and two orders of magnitude
smaller than that of the 1st-order term, which shows the relative insignificance of the higher order contribution
to the general behavior of the system. The trends are continued at 3rd-order: smaller amplitudes, heightened
cyclic nonlinearity, and somewhat greater sensitivity to Ni (but differences still small).

Attention is now turned to the behavior of the PCE coefficients for the subcritical case of k = 6.2. These
results are presented in Fig. 12 for both the stable and unstable LCO at this reduced velocity, although the
issue of sensitivity to Ni is documented for the unstable LCO, which is most dissimilar to what was just shown
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Fig. 11. Comparison of PSCSP predictions of bXi components (pitch and plunge) during LCO at k = 6.5 for two different numbers of
intervals, Ni: (a) bX0 (includes the deterministic CSP prediction for comparison); (b) bX1; (c) bX2; (d) bX3.
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for k = 6.5. Not surprisingly, the behavior of the WHe expansion coefficients for the large-amplitude, stable
LCO (upper branch) is seen to be similar to that just reviewed. Curiously, though, the coefficients associated
with the unstable LCO (lower branch) do not show an increasing level of physical nonlinearity as the order of
the term increases. Also, while the coefficient amplitudes are generally smaller than for the stable LCO, the
2nd- and 3rd-order coefficients of the unstable LCO grow to nearly the amplitude of that of the stable
LCO. Furthermore, the amplitude of both coefficients is more than a factor of two larger than for k = 6.5.
It may be speculated that these changes in amplitude are attributable to the proximity of k to the cyclic fold,
particularly when k3 is largest, when there are relatively larger variations in LCO amplitude than at supercrit-
ical values of k (owing to the change in slope of the solution path near the fold). However, this point should be
further investigated. Still, these effects are evident only in the higher order terms, which are more than an order
of magnitude smaller than the 1st-order term.

3.2.2. The ISCSP method

Results computed with the ISCSP method at k = 6.5 and k = 6.2 (unstable solution on lower branch) are
now compared with that obtained using the PSCSP approach. In all cases, Ni = 10 is assumed. When describ-
ing the ISCSP results, the phrase ‘‘Nth-order’’ denotes the order of the WHe expansion used in the analysis.
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Thus, a 1st-order ISCSP analysis involves only a two-term expansion, and leads to predictions of bX1 that are,
in general, different than what would be predicted with a 2nd-order analysis. The differences are caused by
nonlinear couplings between expansion terms appearing at different orders in the intrusive formulation. This
stands in contrast with the PSCSP approach, where the coefficient calculation at one order is independent of
the calculation at another order (i.e., the calculations are based solely on the ensemble data).

Excellent agreement between the PSCSP and ISCSP methods is observed. WHe expansion coefficients are
shown in Fig. 13, in terms of pitch and plunge, for cases of greatest interest. First, the 1st-, 2nd- and 3rd-order
coefficients are reported in Figs. 13(a)–(c) for k = 6.5. In Fig. 13(a), the analysis with the ISCSP method is
applied at two different orders, and found to yield results nearly equivalent to that of the PSCSP method. Cal-
culation of bX2 shows a slight improvement by going to 3rd-order in the ISCSP analysis, at which point the
results become nearly identical to that of the the PSCSP method. Again, for bX3 computed results are in excel-
lent agreement. Finally, in Fig. 13(d), the 3rd-order component of the LCO (lower branch) at k = 6.2 is exam-
ined. For this more benign LCO, the ISCSP and PSCSP methods provide results that are indistinguishable.

The purpose of the ISCSP method is to provide an efficient means for computing the stochasticity of LCOs
by replacing a large number of deterministic calculations from which variability is observed (i.e., sampling)
with a single calculation in which uncertainties are propagated through the analysis. However, the PSCSP
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Fig. 13. Comparison of ISCSP and PSCSP predictions (Ni = 10) of bXi components (pitch and plunge) during LCO at k = 6.5 and k = 6.2
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method is found to be much more efficient than the currently implemented ISCSP method, since relatively few
full-order realizations are needed to compute the WHe expansion coefficients with the PSCSP approach. The
Jacobian in the ISCSP methodology is numerically evaluated and of larger size than that of the PSCSP (or
CSP) approach. Thus, the current ISCSP formulation involves additional function evaluations, each requiring
expected value computations like that used in the PSCSP technique. It is possible that the ISCSP method
could become more competitive with the PSCSP method if the evaluation of the expected values, ÆGHeiæ, could
be analytically accelerated, but this possibility is unlikely for more complicated analysis using computational
fluid dynamics. Still, both methods are faster than a straightforward sampling-based approach, like Monte-
Carlo simulation.

3.2.3. Validation of the stochastic cyclic analysis

The stochastic analysis (PSCSP and ISCSP methods) is validated by comparing simulated realizations X, as
a function of k3(n) over the interval nmin = �5 to nmax = 5, to actual realizations computed with the CSP
method. The reduced velocity (k) is specfied to be 6.5. The simulated realizations are evaluated by substituting
computed WHe expansion coefficients into (36). The level of agreement between the stochastic projection
methods and the full-order simulations was excellent.

Comparisons between the stochastic methods and the CSP technique are provided in Fig. 14. The compar-
ison is achieved by examining predicted maximum plunge of the LCO, as extracted from X, at 10 values of k3

evenly distributed over the range of n examined. An L2-norm of the difference between the predictions of the
CSP method and either stochastic method (iDXi2) is also calculated. In computing the stochastic results, Ni is
assumed, and the ISCSP calculations are carried out to 3rd-order in the PCE. Using the WHe expansion coef-
ficients that are determined, lower orders of coefficients are retained to examine the dependence of the differ-
ence norm on the number of terms included in the expansion.

As desired, both the PSCSP and ISCSP methods yield near equivalent results over equivalent expansion
orders. Results for the PSCSP method are shown in Fig. 14(a). In this figure, which includes an inset giving
greater detail of the solutions near nmax, it is evident that increasing order of the PCE improves the compar-
ison through third order. This observation is confirmed by evaluating khP

CSP � hP
PSCSPk2, where hP

CSP and hP
PSCSP

are maximum values of plunge predicted by the CSP and PSCSP methods over the permitted range of n values.
Norm values at various orders are 0.00288 (1st order), 0.00279 (2nd order), 0.000617 (3rd order), and 0.00313
(7th order). When order is increased to 7th order, the PSCSP results obviously diverge from the CSP results.
This behavior warrants further investigation, but may be attributable to the need for increasing the range of k3

over which full-order realizations are gathered in the PSCSP computations, or numerical sensitivities arising
from the admission of higher order terms in the assumed expansions beyond that which is reasonably sup-
-2.1 -2.075 -2.05 -2.025 -2

0.99

0.995

1

1.005

k3

M
ax

im
um

pl
un

ge
(c

ho
rd

s)

-3.75 -3.5 -3.25 -3 -2.75 -2.5 -2.25

0.95

1

1.05

1.1

1.15

1.2

1.25 MCS results
0th-order PCE
1st-order PCE
2nd-order PCE
3rd-order PCE
7th-order PCE

k3

M
ax

im
um

pl
un

ge
(c

ho
rd

s)

-3.75 -3.5 -3.25 -3 -2.75 -2.5 -2.25

0.95

1

1.05

1.1

1.15

1.2

1.25 CSP results
0th-order ISCSP
1st-order ISCSP
2nd-order ISCSP
3rd-order ISCSP

Fig. 14. Comparison of maximum plunge values during LCO computed with deterministic (CSP) and stochastic analysis over complete
range of spring stiffness variations: (a) PSCSP results; (b) ISCSP results.



P.S. Beran et al. / Journal of Computational Physics 217 (2006) 217–247 241
ported by the data. Similar trends in the accuracy of the ISCSP are exhibited through 3rd order, where the
norms are 0.00288 (1st order), 0.00277 (2nd order), and 0.000520 (3rd order). Higher orders were not
investigated.

3.3. Time-domain analysis with WHa expansions

While the WHe expansion works well when applied to the LCO data presented in cyclic form, where the
time domain in a sense is restricted, it is seen above that expansion fails in the physical time domain. The root
of the problem is in the inadequacy of the WHe expansion to capture the growing nonlinearity of the response
with respect to the rv with increasing time. A multi-resolution analysis is now employed to provide improved
resolution, even for large times.

WHa expansions are computed for the low-order airfoil problem assuming variability only in k3. This
parameter is expressed as a function of n, which is assumed to be a uniform rv [32], in a manner consistent
with the formulation presented above for x, and the derivation of WHa coefficients through the discrete wave-
let transform.

It is first demonstrated that the WHa expansion does an excellent job of resolving the extreme nonlinearity
of a(t,n) at large time. Results are shown for the case of spring hardening (supercritical LCO at k = 6.5) and
softening (subcritical LCO at a point very close to k*, k = 6.284) in Fig. 15 for t = 18,000, a time sufficiently
large for the WHe expansion to collapse. When the spring either hardens or softens, Fig. 15 shows rapid var-
iation of a with respect to realizations of n less than about 0.4; for these realizations, LCO has developed at
times much less than 18,000. The variation of oscillation frequency with stiffness, accumulated over numerous
oscillations, is the mechanism for the rapid changes in a. In the case of spring hardening, when realizations of
n are sufficiently large, LCO amplitude is diminished as the nonlinearity becomes sufficiently strong. For
spring softening, realizations in n above 0.4 eliminate LCO altogether, since the corresponding increase in
k3 from its deterministic value of �3 restricts the subcritical behavior of the system. Also shown in Fig. 15
is the improvement in the WHa prediction of the deterministic behavior (the ‘‘full model’’) when the resolution
level is increased from J = 6 to J = 7. At this level, the nonlinear variations in a are very closely reproduced.

Focusing attention now on the density functions of the airfoil response, once in LCO, it is found that the
WHa expansion successfully reproduces the stochastic characteristics of the deterministic system, as obtained
through a 4000-sample Monte-Carlo simulation. In Fig. 16 it is seen that the WHa expansion converges rap-
idly, matching very closely the sampling results of the deterministic system at resolution level J = 8 (512
expansion coefficients).
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3.4. Fast predictions of failure probability with B-splines

Fast predictions of failure probability are obtained using B-spline stochastic projections of sampled LCOs
[27]. Results, which will appear elsewhere, will be reviewed here in two sets. First, stochastic LCO responses
are shown for the cases of spring hardening and softening described above, assuming the low-order airfoil
model. These results are shown to further demonstrate the bi-modal character of response distributions in
the presence of subcritical bifurcations. Then, the efficacy of the B-spline approach is demonstrated for
LCO results obtained using a higher order model based on computational fluid dynamics (CDFD). The
parameters considered to be uncertain are k3 (n2) and a0 (n1): their distributions are Gaussian as described
at the start of Section 3.

3.4.1. Low-order airfoil model

Compact representations of LCO behavior, as represented by peak pitch angle (designated aLCO), are
computed through the B-spline-based stochastic representation (46) using sampling of LCO response at
selected nodes. Nodes are sampled, as described in the Formulation section, at key locations within a
square domain of parameter values for which extreme values of jn1j and jn2j do not exceed 4, and the
corresponding samples are used to compute the coefficients âij. Once the coefficients are found, then a fast
MCS of (46) is carried out at different flight speeds to predict the probability that an LCO is encountered
(for the spring softening case).

The number of nodes needed to derive accurate stochastic models depends on the nature of the spring
response. For the case of spring hardening, response variations with respect to changes in structural stiff-
ness are smooth, and there is no variation with respect to initial angle. A symmetric array of 36 nodes, 6 in
the n1 stochastic coordinate direction and 6 in the n2 direction were found to be sufficient. In contrast, the
case of spring softening was more demanding. For this problem, a discontinuity in the variation of the
response with respect to a0 is encountered (cf. Fig. 8. Capture of the geometric properties of the discon-
tinuous surface in the n1 � n2 sub-domain required an increased number of nodes: 10 in the n2 direction
and 18 in the n1 direction. Clearly, when the nodes are spaced according to Table 1, the surface is not
captured perfectly. To assess the convergence of the scheme when a discontinuity is present, 6 nodes
and 10 nodes are retained in the n1 direction, and the MCS results compared to that of the 180-node
model.

For evaluation, PDFs of LCO response predicted by the B-spline technique are computed for the case of
spring hardening at k = 6.5 and the case of spring softening at k = 6.2. The results, which are shown in Fig. 17,
are assessed by comparing an MCS of the deterministic model to that of an MCS based on (46) (4000 samples
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each). It is found that for spring hardening, 36 samples of LCO behavior are sufficient to capture the response
PDF well over the range the n values considered. Owing to the relatively low number of samples needed to
describe the system for this case, the B-spline technique is found to accelerate MCS by nearly a factor of 100.

For the case of spring softening, a B-spline representation involving 60 samples is not adequate, but when
the number of samples is increased to 180, the PDFs are in good quantitative agreement. It should be recalled
that under subcritical conditions (k < k*), two solutions are available: equilibrium (characterized by the algo-
rithm as an LCO of zero amplitude) and large-amplitude LCO. Thus, the PDF is bi-modal in character, with a
spike at zero amplitude. With a 180 samples, the B-spline technique effectively captures the bi-modal nature of
the PDF, and does an excellent job of predicting very small probabilities in between the basic sets of solutions.
It should be noted that the increase in computational time needed to obtain 4000 samples of the deterministic
model is a result of needing longer run times to differentiate properly the character of the time-asymptotic
solution.

3.4.2. High-order airfoil model
A related aeroelastic airfoil model is studied, assuming that the airloads are computed with CFD (dis-

crete Euler equations). This constructed model is described by Millman [27], the reference the reader
should consult to obtain details of the procedure and its verification. To justify the use of a high-fidelity
physics representation of the aerodynamics, the structurally supported airfoil is suspended in an airstream
at Mach 0.85, leading to the generation of shocks that move adjacent to the airfoil as it dynamically
changes its pitch and plunge orientation.

Owing to the new demands of the environment, alterations are made to the assumed values of the phys-
ical parameters to yield well-behaved LCO branches like that obtained for the low-order airfoil model (but
at much smaller pitch angles to maintain the viability of the Euler computation). In particular, the nonlinear
stiffness coefficients in torsion are increased (e.g., k5 = 500) and structural damping is added to both the
pitch and plunge dynamical equations. For the new conditions, a Hopf bifurcation at about k* = 6.78 is
predicted. In the stochastic analysis, changes are also made in the distributions of a0 and k3: a0(n) = 1.5n
(degrees) and k3(n2) = �30 + 3 n2, and 10,000 samples are computed to improve the statistical convergence
of the MCS.

Surface plots (response surfaces) of the B-splined samples are shown in Fig. 18. Two multivariate splines
are shown: a spline computed with an 8 · 4 array of nodes (obtained using the process described in the For-
mulation section), and a refined spline based on an irregular distribution of about 100 nodes that are selected
to capture sharply the discontinuous, separatrix surface. Details of the process by which the surface is
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captured and the generation of the refined spline are given in [28]. The results of the 10,000-sample MCS gen-
erated for the coefficients âij of each spline are shown as points on the different surfaces. It should be noted
that a Monte-Carlo simulation of the deterministic model is not available for comparison, since the calcula-
tion time associated with each sample is on the order of one day, and the computational effort expended on the
sampling for the construction of the B-spline already considerable. The effort needed to carry out the Monte-
Carlo simulation for the deterministic model would have been 100 times greater.

4. Summary and concluding remarks

In this paper, compact representations of the stochastic properties of an aeroelastic airfoil in LCO have
been computed, assuming variability in torsional stiffness and in initial pitch angle. These representations
can be used to quantify rapidly key uncertainties associated with the system, such as the probability that
the system will fail. Uncertainty analysis is essentially applied to three different temporal regions: all times
leading up to LCO (Wiener–Haar projection), all times during LCO (Cyclic projection), and particular
instants during LCO (B-spline projection). In the case of the third approach, the low-order airfoil model is
supplemented with a high-order model based on CFD to demonstrate the versatility of the method. Compar-
isons of the compact representations to the deterministic models they replace verifies the correct formulation
of the three techniques.

The Wiener–Haar, Cyclic and B-spline projection methods, as developed, have different strengths and
weaknesses. In addition to the discussion below, these findings are summarized in Tables 2 and 3. The appli-
cability of these methods to a particular problem depends on the physics of the problem and the specific
requirements of the stochastic interrogation. Hybrid approaches linking the methods have not been carried
out here, but are reserved for future work. 4
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Table 2
Comparison of stochastic methods for LCO (strengths)

Cyclic (response) Wiener–Haar (response) B-spline (amplitude)

Rapid P-convergence Resolution of nonlinearity Resolution of nonlinearity
Low deterministic cost Unsteady (non-LCO) Non-intrusive

Table 3
Comparison of stochastic methods for LCO (weaknesses)

Cyclic (response) Wiener–Haar (response) B-spline (amplitude)

LCO only Complexity (intrusive) LCO amplitude only
ICs not random Dimensionality
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Owing to the limits of the responses captured by the Cyclic and B-spline projection techniques, the Wiener–
Haar approach shows the most promise for general, unsteady applications, e.g., those applications not leading
to simple LCO. In such cases, the assumption of time periodicity breaks down and it becomes more difficult to
pick particular conditions that would characterize failure. For example, peak pitch angle becomes a less sig-
nificant measure of overall vehicle safety. In this sense, stochastic analysis of all available data becomes more
important, since it is in this context that a variety of failure sources (e.g., loads, tip deflection, separation, etc.)
can be simultaneously evaluated. It is, though, important to consider going beyond the Wiener–Haar projec-
tion of data to a tighter connection between the multi-dimensional basis and the time-integration algorithm,
such as in the case of intrusive methods, or the equation-free approach suggested in [41].

For problems that predictably enter into LCO over a range of conditions (such as in a preliminary design pro-
cess, where LCO would be removed through a reliability-based optimization), Cyclic methods, and their Har-
monic Balance brethren, offer the most computationally efficient means of capturing LCO. LCOs obtained in
this manner could then serve as a means for non-intrusively projecting onto compact bases using either
B-spline or Wiener–Hermite techniques. Based on the demonstrated success of the B-spline approach to captur-
ing jumps in response characteristics arising from a subcritical bifurcation, application of the B-spline projection
method to peak responses obtained from cyclic data (i.e., non-intrusive) would seem to be the superior method.
Also, as described above, WHa expansions may be incorporated into the Cyclic methodology. However, the key
issue that remains to be addressed is how to link cyclic solutions with initial conditions (ICs). The stochastic pro-
jection of responses using the B-spline shown in this paper involved responses computed with a time-domain
strategy. A similar mapping of input-to-output characteristics, including initial conditions, needs to be developed
for the Cyclic method. As is the case with the Wiener–Haar projection, further work needs to be carried out to
determine if an intrusive Cyclic strategy can be made viable (i.e, more efficient than a non-intrusive approach).

Finally, it is worth noting that each of the proposed methods appears to work well when the number of
sources of variability is limited. However, it is hard to determine how each of these techniques might be gen-
eralized to handle large numbers of variable parameters, such as when a variability is distributed, or when a
system is highly complex. This comment is especially applicable to methodologies in which the stochastic char-
acteristics of input variables need to be explicitly represented, as is true of intrusive techniques. The cyclic tech-
niques, which were constructed using a single rv of standard normal distribution, may most readily be
extended to treat multiple Gaussian variables, whereas this generalization may prove more challenging for
the Wiener–Haar approach. Recent work (cf. [18]) has examined the application of multi-resolution methods
to problems involving multiple stochastic dimensions; however more work needs to be done to overcome the
greatly increased cost of these computations.
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